
Determinations of the genomic DNA sequences of hu-
man, mouse, and other organisms are landmark achieve-
ments, but the major changes in biology and medicine an-
ticipated as a result (Lander 1996) require that a function
be assigned to all the important segments within those
genomes (Collins et al. 2003). It has long been realized
that functional sequences change more slowly than non-
functional (neutral) DNA sequences over evolutionary
time (Kimura 1968; Li et al. 1981). Some gene prediction
and assessment algorithms incorporate interspecies se-
quence alignments into their analysis (see, e.g., Korf et al.
2001; Wiehe et al. 2001; Nekrutenko et al. 2002). This
slower rate also can be predictive for sequences involved
in gene regulation. One of the early approaches for find-
ing critical sequences within bacteriophage promoters
used sequence comparison (Pribnow 1975), and highly
conserved noncoding DNA sequences are now com-
monly used as guides for potential gene regulatory ele-
ments (for review, see Hardison 2000; Pennacchio and
Rubin 2001).

In this paper, we address two complications to the
large-scale application of genomic sequence alignments
to predicting cis-regulatory modules (CRMs), i.e., dis-
crete sequences such as promoters, enhancers, and si-
lencers that control gene expression. The rate at which
neutral DNA changes is highly variable within a genome
(Wolfe et al. 1989; Hardison et al. 2003), and thus the
amount of change observed needs to be corrected for lo-
cal variation in the neutral rate. Such a corrected score
can be used to compute a probability that a sequence is
conserved because of purifying selection (Waterston et
al. 2002; Chiaromonte et al., this volume). The second
complication is that DNA sequences which do not code
for protein (noncoding DNA) can be selected for func-
tions other than a role in regulating gene expression. Ex-
amples include genes for noncoding RNAs such as
tRNAs and microRNAs. Sequences involved in chromo-
some dynamics may also be under selection. We describe
an approach to find patterns characteristic of gene regula-
tory sequences within the alignments (Elnitski et al.
2003). 

We are applying these analyses of whole-genome se-
quence alignments to predict regulatory elements of

genes expressed during late erythroid differentiation.
This is a particularly attractive somatic cell model for
mammalian differentiation because morphologically dis-
tinct cell types are made during the progress of differen-
tiation and maturation, and several abundant red cell pro-
teins, such as hemoglobins and cytoskeletal proteins, are
well-characterized markers of later maturation (Migliac-
cio and Papayannopoulou 2001). Furthermore, cultured
cell lines such as murine erythroleukemia (MEL) cells
can be chemically induced to undergo a transition similar
to that of proerythroblasts to erythroblasts (Friend et al.
1971). More recently, progenitor cell lines missing a par-
ticular transcription factor critical for erythroid differen-
tiation, GATA-1, have been isolated and phenotypically
rescued using a conditionally active GATA-1 (Weiss et
al. 1997). Thus, we can assay globally for genes respond-
ing in these two models for erythroid differentiation, and
in the latter case, it is highly likely that early-responding
genes are direct targets of GATA-1. We report some ini-
tial success applying the computational predictions of
CRMs in these somatic cell systems.

ALIGNMENTS OF WHOLE MAMMALIAN
GENOMES

The availability of the human (Lander et al. 2001) and
mouse (Waterston et al. 2002) genome sequences makes
it possible to determine comprehensively which DNA se-
quences are present in both, which have been inserted or
deleted, and which have been altered by nucleotide sub-
stitution since primates and rodents diverged. A high-
quality assembly of the rat genome sequence is available
(International Rat Genome Sequencing Consortium, in
prep.), and adding this to the aligned sequences will pro-
vide greater resolution on these issues. All the sequences
encoding and regulating conserved functions should be
found within the sequences common to mouse and hu-
man, hence this is the starting point for our search for pre-
dicted CRMs.

In our approach to whole-genome alignments, we first
find all the meaningful local alignments between the two
sequences using the program blastz, and then we use
axtBest to arrange these local alignments into chains that
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reflect blocks of conserved synteny, which can be many
megabases in length (Schwartz et al. 2003). Further lay-
ers of chaining reflect duplications, inversions, and other
events (Kent et al. 2003). All sequences in one genome
are given the opportunity to align with sequences in the
other, hence it is an all-versus-all alignment; no prior de-
ductions about blocks of conserved synteny are used. The
scoring parameters have been optimized for long mam-
malian genomic DNA sequences (Chiaromonte et al.
2002) and can be set to achieve high sensitivity with very
little noise (Schwartz et al. 2003). Although it is not pos-
sible at present to know definitively that all the homolo-
gous sequences have been aligned, it is likely that the vast
majority have been. 

When interpreting the results of interspecies sequence
alignments, it is important to distinguish the part of the
genome derived from the last common ancestor, which
we refer to as the “ancestral” portion, from the part that
arose only along one lineage (Fig. 1). Virtually all lin-

eage-specific insertions result from retrotransposition
events (Lander et al. 2001); these are not aligned in our
procedure (Schwartz et al. 2003). Lineage-specific seg-
mental duplications comprise about 6% of the human
genome (Bailey et al. 2002), but all copies can align with
the comparison species. The ancestral portion is the non-
repetitive DNA plus the repeats that were present in the
last common ancestor. Orthologous ancestral repeats are
included in alignments that begin in adjacent single-copy
regions. The ancestral repeats are relics of transposable
elements that were active prior to the primate–rodent di-
vergence but no longer transpose. Although a very small
fraction of ancestral repeats have been implicated in reg-
ulation of gene expression (Jordan et al. 2003), the vast
majority have no identifiable function. Hence, the aligned
orthologous copies in human and mouse represent a good
model for evolution in neutral DNA (Waterston et al.
2002; Hardison et al. 2003).

To the extent that the alignments are comprehensive,
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Figure 1. Events that cause sequence divergence over evolutionary time and variation in their rate of occurrence. Types of DNA se-
quences in the ancestor to rodents and primates are diagramed on the top line; these include coding exons, cis-regulatory modules
(CRMs), and interspersed repeats from transposons (brown angled boxes), separated by single-copy DNA. The diagrams along the
sides illustrate the accumulation of nucleotide substitutions (stars), large deletions (absence of icons), and insertions of new classes
of transposons (green and purple angled boxes) in the lineage to mouse (left) and human (right). Sequences that were in the ancestor
and have not been deleted can align between human and mouse (bottom diagram). From the human–mouse alignments, one can in-
fer the substitutions per site in the ancestral repeats (AR), the amount deleted (nonaligning fraction of the ancestral genome), and the
amount of DNA inserted (fraction lineage-specific repeats) in 1-Mb nonoverlapping windows (2782 in the human genome). The
graphs in the center column show the distribution of these values for the three processes of DNA change.
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count for at most 2% of the human genome, and they are
obviously under selective constraint. The other 38% of
the human genome that does not code for protein but still
aligns with mouse should include gene regulatory se-
quences and other functional noncoding sequences. How-
ever, these alignments also include much neutral DNA;
e.g., about one-fourth of all the ancestral repeats in hu-
mans align with orthologs in mouse. All the sequences
that align between mouse and human are conserved in the
sense that they are present in both species, but the goal is
to identify the sequences that are subject to purifying se-
lection. It is the latter sequences that are playing a role in
some conserved function. 

A major complication to answering this question is that
the rate of neutral evolution varies across the genome.
The distribution of nucleotide substitutions per site in an-
cestral repeats (computed on 1-Mb nonoverlapping win-
dows) is quite wide (Fig. 1), reflecting substantial re-
gional variation in the underlying neutral substitution
rate. In addition, the amount of DNA inferred to be
deleted from mouse and the amount of transposable ele-
ments inserted and retained show substantial variation
(Fig. 1). Furthermore, the amounts of neutral substitution,
deletion, insertion (of LTR repeats), recombination, and
single-nucleotide polymorphisms (SNPs) covary dramat-
ically (Fig. 2A). Because the substitutions are measured
in neutral DNA, different levels of selection cannot ex-

one can draw an informative inference about the non-
aligning part of the ancestral portion of a genome—it is
not likely to be present in the other genome. Because we
do not align lineage-specific insertions, and lineage-spe-
cific duplicates can align, the simplest explanation for the
sequences not being in the comparison genome is that
they were deleted. Other analyses based on a relatively
constant genome size in mammals also argue that the
nonaligning fraction reveals deletions in the comparison
genome (Waterston et al. 2002). 

Genome sequences of additional species, such as rat (In-
ternational Rat Genome Sequencing Consortium, in prep.),
are being assembled as large-scale genomic sequence and
analysis projects move into more functional and analytical
studies (Collins et al. 2003). Pair-wise and multiple align-
ments of these sequences are regularly updated and made
available on the UCSC Genome Browser (Kent et al. 2002)
at http://genome.ucsc.edu. Additional mammalian genome
sequences substantially improve the power of sequence
alignment techniques to resolve functional from nonfunc-
tional DNA sequences (Thomas et al. 2003).

CONSERVATION AND SELECTION

About 40% of the human genome aligns with se-
quences in the mouse genome. As expected, almost all
(99%) of the genes align between the genomes. These ac-
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plain the regional differences. Rather, the covariation in
the various divergence processes appears to reflect an in-
herent tendency of large, megabase-sized regions to
change at a fast or slow rate (Chiaromonte et al. 2001).
The molecular and cellular basis for this inherent ten-
dency to change is unknown, although it is possible that
repair of double-stranded breaks could be at least part of
the explanation (Lercher and Hurst 2002). 

Given the variation in neutral substitution rates, the
goal is to find aligning segments whose similarity signif-
icantly exceeds that expected from divergence at the lo-
cal neutral rate. These should be the sequences subject to
purifying selection. Indeed, the significance of a particu-
lar alignment score will vary substantially depending on
the divergence rate of the surrounding DNA (Li and
Miller 2002). Thus, the fraction of matching nucleotides
for alignments in small (50 bp) windows was adjusted for
the local neutral rate, empirically estimated from nearby
aligning ancestral repeats. The overall distribution of
these adjusted scores is broad; when compared to its neu-
tral component (the distribution for ancestral repeats
only) it presents a marked right-skewedness—i.e., in-
creased frequencies on higher score values (Waterston et
al. 2002). A statistical decomposition of this skewed
overall distribution leads to the conclusion that about 5%
of the human genome is under purifying selection (Wa-
terston et al. 2002; Chiaromonte et al., this volume). This
is over twice the amount of DNA that codes for protein,
showing that the noncoding portion of the genome con-
tributes significantly to the functional DNA. However, it
is only about one-eighth of the conserved sequences, so a
majority of the aligning sequences do not reflect selection
for some function.

To make these scores more useful to biomedical scien-
tists, L scores (or Mouse Cons and Human Cons) have
been computed that convert locally adjusted similarity
scores into probabilities that alignments in a given 50 bp
result from selection. These can be accessed at the UCSC
Genome Browser. An example of this track for the mouse
Gata1 gene shows that protein-coding exons, the first in-
tron, the promoter, and a region about 3–4 kb further up-
stream are not only conserved (align), but are highly
likely to be generated by selection (Fig. 2B). The up-
stream region corresponds to an enhancer that confers
erythroid-specific expression during primitive erythro-
poiesis and collaborates with the intronic enhancer to ac-
tivate expression during definitive erythropoiesis (On-
odera et al. 1997). Thus, these scores, generated from the
alignment scores adjusted for local rate variation, can be
effective indicators of CRMs.

DISCRIMINATING CRMS FROM
OTHER DNAs

The Mouse/Human Cons or L scores are measures of
alignment quality, where matches are favored more than
mismatches, which are favored more than gaps. Noncod-
ing DNA sequences with a high L score are more likely to
be subject to purifying selection, and this set of sequences
should contain CRMs regulating conserved functions.

However, it should also contain other functional sequences
such as genes encoding structural RNAs and microRNAs. 

Therefore, we explored several computational ap-
proaches to analyzing interspecies genomic sequence
alignments, aiming to develop computational methods to
distinguish regulatory regions from neutrally evolving
DNA. To do so, we employed statistical models that rec-
ognize alignment patterns characteristic of those seen in
known CRMs. Alignments rich in these patterns need not
be those that score highest in quality (e.g., a similarity
score) or a likelihood of being under selection. Known
enhancers and other CRMs tend to be clusters of highly
conserved binding sites for transcription factors, but se-
quences between those binding sites are more variable
between species. Thus, alignment quality measurements
in the CRMs are usually less than those seen in regions
under more uniform selection, such as coding exons.

Three training sets were collected from the whole-
genome human–mouse alignments: (1) known CRMs,
which are a set of 93 experimentally defined mammalian
gene regulatory regions (accessible from GALA at
http://www.bx.psu.edu/), (2) well-characterized exons
(coding sequences, as a positive control), and (3) ances-
tral interspersed repeats (the major sequence class used
for neutrally evolving DNA). Quantitative evaluation of
statistical models that potentially could distinguish func-
tional noncoding sequences from neutral DNA showed
that discrimination based on frequencies of individual nu-
cleotide pairs or gaps (i.e., of possible alignment
columns) is only partially successful. In contrast, scoring
procedures that include the alignment context, based on
frequencies of short runs of alignment columns, achieve
good separation between regulatory and neutral features
(Elnitski et al. 2003). 

The best-performing scoring function, called regula-
tory potential (RP) score, employs transition probabilities
from two Markov models estimated on the training data.
In practice, the procedure evaluates short strings of
columns in the alignments, giving a higher value to those
that occur more frequently in the CRMs training set than
in the ancestral repeats set (Fig. 3). In this procedure,
alignments are described using a reduced alphabet A. In
each training set, we compute the frequencies with which
short strings of alignment characters are followed by a
particular alignment character. As an example, consider
alignment columns to consist of two types of matches,
those that involve G or C (S) and those that involve A or
T (W), plus transitions (I), transversions (V), and gaps
(G). A 5-symbol alphabet can thus describe the align-
ments. For short strings, the number of possible arrange-
ments of these 5 symbols is computationally manageable.
Therefore, we estimate the probability that any string of
length T is followed by a particular symbol (transition
probabilities), where T is the order of the Markov model.
For example, the empirical frequencies of a pentamer, say
WIISV, followed by a given symbol, say S (or W, I, V, G)
are used to estimate the transition probabilities of a fifth-
order Markov model.

More generally, for a Markov model of order T, we es-
timate the probability that within a regulatory region an
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alignment character s is preceded by the string of charac-
ters s-T to s-1 (pREG[s|s-T...s-1 ] in Fig. 3) as the empirically
observed frequency of the string s-T...s-1s divided by that
of the string comprising the first T positions, s-T...s-1, in
the CRMs training set. We then repeat the same estima-
tion procedure on the ancestral repeats (AR) training set. 

The RP score is computed for any alignment by divid-
ing the transition probability for regulatory regions,
pREG(s|s-T...s-1), by that for ancestral repeats, pAR(s|s-T...
s-1), at each position in the alignment, taking the loga-
rithm, and summing over positions. This log-odds ratio is
illustrated in Figure 3 for sliding windows of length W.
When needed, the score is adjusted for the length of the
alignment (Elnitski et al. 2003). The RP score has been
computed in 50-bp windows (overlapping by 45 bp) for
the human–mouse whole-genome alignments, using a 5-
symbol collapsed alphabet and a fifth-order Markov
model. These scores and plots of them are provided at the
UCSC Genome Browser (http://genome.ucsc.edu, Nov.
2002 human assembly), and they are recorded in the
database of genomic DNA sequence alignments and an-
notations, GALA (Giardine et al. 2003).

A validation study shows that this approach can sepa-
rate the reference data set of 93 known regulatory regions
from the ancestral repeat segments used in training (Fig.
4). Cross-validation studies also support the discrimina-
tory power of the RP score (Elnitski et al. 2003). Of note,
the accuracy of our predictive models should become

even greater as additional regulatory sequences demon-
strated through experimental approaches are added to the
training set and as more alignments are added. Moreover,
the same computational approach can be applied to dis-
crimination among other functional classes, as training
data from them become available.
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Figure 3. Genome-wide computation of regulatory potential (RP) scores. Diagrams on the right illustrate the use of two training sets,
known regulatory regions (REG) and ancestral repeats (AR), to build Markov models describing the likelihood of a string of T align-
ment characters being followed by a particular alignment character. The alignment characters are from a collapsed alphabet (A) that
describes mismatches, gaps, and different kinds of matches. The diagram on the left illustrates the application of these Markov mod-
els to calculate the log-likelihood that a segment of an alignment (window size W) fits with the model for a regulatory region rather
than an ancestral repeat. This log-likelihood is the regulatory potential.

Figure 4. Cumulative distribution of RP scores of alignments in
several classes of DNA, evaluated using fifth-order Markov
models and a 5-letter alphabet. Note the complete separation be-
tween regulatory regions and neutral DNA (ancestral repeats).
The “bulk” alignments are a set picked at random from all align-
ments.
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CALIBRATION OF THE REGULATORY
POTENTIAL SCORE

Realizing that performance on the training set is sel-
dom indicative of performance on new problems not al-
ready in the training set, we analyzed the ability of the RP
score to find known regulatory regions in a well-studied
gene complex. The goal is to find an optimal threshold for
the RP score such that known CRMs are found with high
efficiency (high sensitivity) while other noncoding se-
quences are largely excluded (high specificity). The com-
plex of β-like globin genes (the HBB complex) on human
Chromosome 11 was chosen for these calibration studies
because proximal promoters and upstream regulatory se-
quences (within a few hundred base pairs of the promot-
ers) have been identified for each active gene, and high-
level expression of all the genes is dependent on a distal
(as much as 60 kb upstream) enhancer called the locus
control region, or LCR (for review, see Forget 2001;
Hardison 2001; Stamatoyannopoulos 2001). The LCR is
marked by at least four DNase hypersensitive sites
(HS1–HS4) that contribute individually and collectively
to enhancer function (for review, see Hardison et al.
1997; Li et al. 2002). The five active genes are tran-
scribed right to left in the diagram in Figure 5. A set of
eleven intervals was compiled that cover each of the well-
characterized CRMs for which experiments show clear,
independent effects on regulation. DNA sequences that
affect expression levels only in combination with other
CRMs were not included. Four of the eleven intervals in
the reference set were also in the training set used for the
RP score. This limits the stringency of this test, but until

a larger number of regulatory regions are carefully char-
acterized, some overlap with the training set is difficult to
avoid. The reference CRMs are covered by pair-wise and
3-way alignment scores and by the RP score, but with dif-
ferent values. Some CRMs, such as the LCR HS3 and the
upstream regulatory regions of HBBG1 and HBBG2,
have higher RP scores than conservation scores. 

We used the GALA database (Giardine et al. 2003) to
organize and extract the necessary information for the
calibration study to find an optimal RP threshold. GALA
is a relational database with genome-wide information on
genes (known and predicted), exons, gene products (in-
cluding Gene Ontology descriptions; Ashburner et al.
2000), gene expression (including the GNF data using
Affymetrix human and mouse gene chips; Su et al. 2002),
human–mouse alignments, scores such as L and RP de-
rived from the alignments, binding sites for transcription
factors predicted by matches to TRANSFAC weight ma-
trices (Matys et al. 2003), repeats (Smit and Green 1999),
and much other information. All data are organized by se-
quence positions in the human or mouse genome assem-
blies. GALA allows queries across fields and supports
complex queries that combine results from simple queries
by conventional set operations (union, intersection, and
subtraction) as well as by proximity and by clustering.
Thus, it greatly expands the data-mining capacity beyond
the conventional one-gene or one-locus view most com-
monly used at genome browsers. It can be accessed at
http://www.bx.psu.edu/.

To determine the RP score threshold that works best in
identifying the reference set, we queried GALA to find all
the ranges of DNA that pass each candidate RP score
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threshold in the 68-kb interval encompassing the HBB
complex, including the LCR. After subtracting the exons,
the set of DNA intervals passing the threshold were dia-
gramed using an automatic connection between GALA
and the UCSC Genome Browser (Fig. 5). As expected,
higher thresholds returned fewer intervals, and these sets
were enriched in the reference CRMs. For RP = 2.2, nine
of the eleven reference CRMs are returned. The two that
are missing (promoter and upstream regulatory region of
HBE1) are artifacts of the annotation. They were lost be-
cause the annotation of this gene uses a minor promoter
in the upstream region, thereby including the CRMs in
the annotated “first exon.” The “false positives,” i.e., in-
tervals meeting the filtering thresholds but not annotated
as regulatory regions, are a mixture of overprediction,
true regulatory regions that have not been tested, and a
few artifacts of incomplete annotation, such as the pseu-
dogene HBBP1, which is not in the annotation but whose
exons pass the filters.

Detailed comparison between the intervals passing the
filters and the reference CRMs shows that the specificity
reaches a plateau around RP = 2.3 whereas sensitivity de-
clines above this threshold (Fig. 6, left). Indeed, RP = 2.3
is a minimum in a cost function (Fig. 6, right), and hence
we have used it as the threshold in further analysis. Fur-
ther analysis using the clustering and proximity capabili-
ties in GALA showed that combining this optimal RP
threshold with a requirement that a DNA segment have a
predicted binding site for GATA-1 improved the speci-
ficity from about 0.6 to 0.7. The upper limit on specificity
is caused partly by incomplete analysis of potential cis-
regulatory elements even in the HBB complex.

EXPERIMENTAL TESTS OF PREDICTED
cis-REGULATORY MODULES

The publicly available RP, L, and other scores can be
combined with predictions of binding sites for any rele-

vant transcription factors to predict CRMs genome-wide
for a wide variety of mammalian tissues or stages of de-
velopment. We have begun an extensive set of tests of the
predicted CRMs for genes induced during late erythroid
differentiation and maturation using the two somatic cell
models mentioned in the introduction. Extensive analysis
of microarray expression data has revealed a cohort of
genes induced along with the β-globin genes (Hbb-b1 and
Hbb-b2) in both cell lines. Because the G1E cell line is re-
sponding directly to restoration of the activity of the
GATA-1 transcription factor, we include predicted bind-
ing sites for GATA-1 in our predictions of CRMs. The
cohort of coexpressed genes includes some previously
known to be induced in erythroid cells, such as Alas2,
which encodes the enzyme catalyzing the rate-limiting
step in heme biosynthesis. Other genes such as Hipk2
were not well known as erythroid-induced genes.

The gene Alas2 is an example of our early predictions
and tests. Using GALA to search for intervals meeting
our criteria (RP-score at least 2.3, no exons, and a pre-
dicted GATA-1 site within 50 bp), we found four regions
in the roughly 25-kb region encompassing human ALAS2
(Fig. 7, top). (GALA for mouse with mouse–human RP
scores is now available so that one can perform the anal-
ysis entirely from the perspective of the mouse genome.)
One predicted CRM is the major promoter, another is in
intron 8, which others have shown is an enhancer
(Surinya et al. 1998). We focused on a predicted CRM in
intron 1 for testing. A more detailed view from our inter-
active alignment viewer Laj (Wilson et al. 2001) shows
that the region is strongly conserved and has a predicted
GATA-1-binding site in both human and mouse (Fig. 7,
bottom).

The strategy for testing the predicted CRMs for en-
hancer and silencer function is to add them to an expres-
sion cassette in which the green fluorescent protein gene
is transcribed from a minimal HBB promoter, and then we
force the test construct to integrate at a marked site in
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MEL cells (Bouhassira et al. 1997; Feng et al. 1999; Mo-
lete et al. 2001). Thus, we monitor expression levels in a
very precise and accurate way, because the test constructs
and parental constructs are at the same chromosomal po-
sition (Fig. 8A). The predicted CRM in intron 1 of the
mouse ortholog, Alas2, was amplified by PCR from
murine genomic DNA and ligated into the expression
cassette. Both the test and parental expression cassettes
were forced to integrate at locus RL5 in MEL cells.

The parental cassette with no enhancer expresses GFP,
and it induces a small amount when cells are treated with
HMBA (Fig. 8B). Addition of the predicted CRM from
Alas2 intron 1 increased the expression both before in-
duction, showing an enhancer function, and after induc-
tion, showing that it also affects inducibility. The effect
gets stronger with time of induction. 

The predicted CRM is thus experimentally verified as
an enhancer and as a sequence that confers erythroid in-
ducibility. At this time, we have tested three predicted
CRMs from three different genes and have found that two
boost expression and one has no effect in this system. As

larger numbers of predicted CRMs are tested, we will be
able to improve our models for predicting CRMs. 

CONCLUSIONS

Pair-wise and multiple whole-genome alignments of
human, mouse, and rat are available and are being con-
tinually updated. These alignments, plus scores that pro-
vide guidance on the likelihood that a region is under se-
lection or is rich in alignment patterns typical of
cis-regulatory elements, are available at the Genome
Browser and in our GALA database. Users can access
these scores alone or in combination with other genomic
features of interest (such as predicted binding sites for
transcription factors, CpG islands, and exons) to find can-
didate CRMs throughout the genome. Calibration studies
indicate that an RP threshold of 2.3 is effective for the
HBB complex. Our early results on experimental tests
based solely on these predictions are encouraging, and we
expect continuing improvements in the predictive algo-
rithms. The combination of bioinformatic predictions and
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experimental tests in somatic cell developmental models
can serve as a paradigm for global analysis of regulation
in any tissue.
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